A GENERALIZATION OF A PROPOSITION BY LIAPUNOV ON THE EXISTENCE OF PERIODIC SOLUTIONS

(OBOBSHCHENIE ODNOGO PREDLOZHENIIA LIAPUNOVA O SUSHCHESTROVANII PERIODICHESKIKH RESHENII)

PMM Vol.23. No.2. 1959, pp.409-411
S. N. Shimanov
(Sverdlovsk)
(Received 3 February 1958)

Let us consider the system of equations

$$
\begin{equation*}
\frac{d x}{d t}=a_{s 1} x_{1}+\ldots+a_{s n} x_{n}+X_{s}\left(x_{1}, \ldots x_{n}\right) \quad(s=1, \ldots, n) \tag{1}
\end{equation*}
$$

where $a_{s i}$ are constants. X_{s} analytic functions of x_{1}, \ldots, x_{n}. In the neighborhood of the point $x_{s}=0$, the series expansion of these functions in powers of x_{1}, \ldots, x_{n} begins with terms not below the second order, $X_{s}(0, \ldots, 0)$.

Liapunov has shown that if among the roots of the equation

$$
\begin{equation*}
\left|a_{s i}-\delta_{s i} \lambda\right|=0 \tag{2}
\end{equation*}
$$

there exists a pair of pure imaginaries of the form $\pm \lambda i$, and if the remaining roots have negative real parts, and if the system (1) has a holomorphic integral, independent of t, of the form

$$
\begin{equation*}
M\left(x_{1}, \ldots, x_{n}\right)+\Phi\left(x_{1}, \ldots, x_{n}\right)=C \tag{3}
\end{equation*}
$$

where M is a quadratic form, and where x_{1}, \ldots, x_{n} is the first integral corresponding to the root λi of the linear system of differential equations of the first approximation

$$
\begin{equation*}
\frac{d x_{s}}{d t}=a_{s 1} x_{1}+\ldots+a_{s n} x_{n} \tag{4}
\end{equation*}
$$

and if the function $\Phi\left(x_{1}, \ldots, x_{n}\right)$ has an expansion in x_{1}, \ldots, x_{n} beginning with terms of at least the third order, then the system of equation (1) has a family of periodic solutions, depending on one real parameter. The period of this periodic solution is also dependent on one parameter, and will be a holomorphic function of that parameter. The solution $x=0$ is stable in the Liapunov sense, and any solution with initial conditions sufficiently near $x_{s}=0$, will, as $t \rightarrow \infty$, approach one of the periodic solutions of the said family.

We will note that this proposition is usually formulated on the assumption that the roots $\pm \lambda i$ are excluded from the system of equations of the first approximation (4).

The Liapunov proposition cited can be generalized.

1. We will assume that equation (2) has m critical roots with simple elementary divisors of the form $\pm N \lambda i$, where N is a positive integer or zero, and that among these roots there exists at least one pair of roots of the form $\pm \lambda_{i}$. The remaining roots of equation (2) have negative parts.
2. We will further assume that the system of equations (1) has m - 1 holomorphic integrals of the form

$$
\begin{equation*}
M_{k}\left(x_{1}, \ldots, x_{n}\right)+\Phi_{k}\left(x_{1}, \ldots, x_{n}\right)=C_{k} \quad(k=1, \ldots, m-1) \tag{5}
\end{equation*}
$$

where $N_{k}\left(x_{1}, \ldots, x_{n}\right)$ are first integrals of system (4), corresponding to critical roots of the form $\pm \lambda i N$, and themselves representing forms with constant coefficients of the first or second order. The integrals M_{k} are independent among themselves. The functions Φ_{k} are expanded in series in the neighborhood of the point $x_{s}=0$, starting with terms whose order is higher by one than the order of the corresponding integral M_{k}.

Let $\left(\phi_{1 k}, \ldots, \phi_{n k}\right)(k=1, \ldots, n)$ be a periodic solution of (4), corresponding to the critical roots. It is clear that the expression

$$
\left(\frac{\partial M_{k}}{\partial x_{i}}\right)_{a j} \quad\binom{i=1, \ldots, m}{j=1, \ldots, n}
$$

where the index x_{j} indicates the substitution

$$
x_{j}=\bar{\beta}_{1} \varphi_{j 1}+\ldots+\beta_{m} \varphi_{j m} \quad\left(\beta_{i}=\text { const }\right) \quad(j=1, \ldots n)
$$

is a periodic solution of a linear system, the conjugate of (4).
Thus the product
equals the constant matrix

$$
B=\left\|b_{i j}\right\| \quad\binom{i=1, \ldots m-1}{j=1, \ldots m}
$$

It can easily be shown that on the assumptions made about critical roots (to which correspond simple elementary divisors), the rank of the matrix B is $m-1$. In fact it is clear that no row of the matrix can consist of zeros. for otherwise the system (4) would have a solution
corresponding to one of the critical roots with a secular term, since $b_{i 1}=b_{i 2}=\ldots b_{i m}=0$ is the condition for the existence of a periodic solution for the system of linear nonhomogeneous equations

$$
\frac{d x_{s}}{d t}=a_{s i} x_{1}+\ldots+a_{s n} x_{n}+\varphi_{s i}(t) \quad(s=1, \ldots, n)
$$

This last contradicts the assumption that simple elementary divisors correspond to the critical roots. Let us now assume that the rank of B is less than m - 1 . We can then choose constants l_{1}, \ldots, l_{n} such that the first row in matrix B will become zero, e.g. if instead of the first periodic solution ($\phi_{11}, \ldots, \phi_{n 1}$) we take the combinations of periodic solutions

$$
\sum_{\sigma=1}^{m} l_{0} \varphi_{1 \sigma}, \ldots, \sum_{\sigma=1}^{m} l_{0} \varphi_{n \sigma}
$$

Hence it follows that the rank of matrix B equals $m-1$.
Theorem 1. If assumptions 1 and 2 are fulfilled, then the system of equations (1) has a family of periodic solutions depending on a-1 real parameters. The period of this solution will be a holomorphic function of these parameters.

The solution $x_{s}=0$ is stable in the Liapunov sense, and any solution with initial conditions sufficiently near $x_{s}=0$ will tend, as $t \rightarrow \infty$, to one of the solutions of the family.

Remark: The validity of this assumption for the case when, in addition to the critical roots $\pm \lambda_{i}$. equation (2) also has zero roots to which correspond linear forms, was given by Liapunov in a note to the proof of his theorem [1] (p. 253).

We will sketch the idea of a proof. Let us take the system of integrodifferential equations

$$
\begin{align*}
& \frac{d i_{s}}{d t}=a_{s 1} x_{1}+\ldots+a_{s n} x_{n}+X_{s}\left(x_{1}, \ldots, x_{n}\right)(1+\tau)+\left(a_{s 1} x_{1}+\ldots+a_{s i n} x_{n}\right) \tau+\sum_{i=1}^{m} w_{i} o_{s i} \\
& \text { where } \tag{7}
\end{align*}
$$

$$
w_{i}=-\frac{\lambda}{2 \pi} \int_{0}^{2 \pi / \lambda}\left[\sum_{j=1}^{n} x_{1}\left(x_{1}, \ldots, x_{n}\right)(1+\tau)+\left(a_{81} x_{1}+\ldots+a_{s n} x_{n}\right) \tau\right] \psi_{j i} d t
$$

and where the functions $\psi_{1 i}, \ldots, \psi_{n i}$ are periodic solutions of the conjugate system to system (4) of period $2 \pi / \lambda$.

This system has a periodic solution depending on m-1 parameters $\beta_{1}, \ldots . \beta_{m-1}$ and the parameter τ of the form

$$
\begin{equation*}
x_{s}=Q_{s 1} \beta_{1}+\ldots+Q_{s m-1} \beta_{m-1}+\Phi_{s}\left(t, \beta_{1}, \ldots \beta_{m-1}, \tau\right) \tag{9}
\end{equation*}
$$

where Φ_{s} are periodic functions of time and analytic functions of β and τ. whose series expansion begins with terms of the second order in the neighborhood of the point $\beta=r=0$.

The functions w_{i} will thus have the form

$$
\begin{align*}
& w_{i}\left(\beta_{1}, \ldots, \beta_{m-1}, \tau\right) \fallingdotseq-\frac{\lambda}{2 \pi}\left[\left(D_{i 1} \beta_{1}+\ldots+D_{i m-1} \beta_{m-1}\right) \tau+\right. \\
& \left.\quad+(1+\tau) P_{i}\left(\beta_{1}, \ldots, \beta_{m-1}, \tau\right)\right] \quad(i=1, \ldots, m) \tag{10}
\end{align*}
$$

For the system (1) to have a periodic solution of period ($2 \pi / \lambda$) $(1+r)$, it is necessary and sufficient for the system of equations

$$
\begin{equation*}
w_{i}\left(\beta_{i}, \ldots, \beta_{m-\lambda}, \tau\right)=0 \quad(i=1, \ldots, m) \tag{11}
\end{equation*}
$$

to have a solution in the neighborhood of the point $\beta=\tau=0$. The propositions formulated are an immediate consequence of theresults published in [2].

Let us now assume that the integrals (5) hold good. We will substitute in them the periodic solution (9) of the auxiliary system (7), (8). We get

$$
M_{k}\left(x_{1}(t, \beta, \tau), \ldots\right)+\Phi_{k}\left(x_{1}(t, \beta, \tau), \ldots\right) \equiv C_{k}\left(t, \beta_{1}, \ldots \beta_{m-1}, \tau\right) \quad(k=1, \ldots, m-1)
$$

Differentiating these identities with respect to t, and taking into consideration that $x_{1}(t, \beta, \tau), \ldots, x_{n}(t, \beta, \tau)$ is a periodic solution of the auxiliary svstem, and that $C_{k}\left(t, \beta_{1}, \ldots, \beta_{m-1}, r\right)$ is a periodic function of t, of period $2 \pi / \lambda$, we will next integrate these identities with respect to t between the limits 0 and $2 \pi / \lambda$. We thus get the system of linear homogeneous equations

$$
\left[b_{i 1}+(\ldots)\right] w_{1}\left(\beta_{1}, \ldots,\left(\beta_{m-1}, \tau\right)+\ldots+\left[b_{j m}+(\ldots)\right] w_{m}\left(\beta_{1}, \ldots, \beta_{m-1}, \tau\right)=0\right.
$$

Terms whose order in β and τ is higher than the first are not entered tn the parentheses (...). Since the rank of matrix B is $m-1$, without loss of generality we can assume that a system of linear homogeneous equations in x_{1}, \ldots, x_{m} can be solved for x_{1}, \ldots, w_{m-1}.

Therefore, for system (1) to have a periodic solution in this case, it is sufficient for the condition

$$
w_{m}\left(\beta_{1}, \ldots, \beta_{m \sim 1}, \tau\right)=0
$$

to be satisfied.
This equation can always be satisfied by a choice $r\left(\beta_{1}, \ldots, \beta_{m-1}\right)$. $\tau(0, \ldots, 0)=0$. Substituting τ in (9), we get a family of periodic solutions depending on the parameters $\beta_{1}, \ldots, \beta_{n-1}$. The period of this solution will be $2 \pi / \lambda\left(1+\tau\left(\beta_{1}, \ldots, \beta_{m-1}\right)\right.$. This proves the first part of the assertion of Theorem 1.

The proof of the second part of the theorem presents no difficulties, and is a consequence of the general assumption of the Liapunov stability theory as to a special case of the existence of a parametric solution in critical cases.

When the number of first analytic integrals is less than $n-1$, in order that the system (1) shall have periodic solutions, some additional conditions must be satisfied. For example, the following theorem holds good:

Theorem 2. Let the number of integrals of type (5) be $l<m-1$. Then system (1) will have a family of periodic solutions depending on l independent parameters, provided that $\left|b_{i j}\right| \neq 0$ ($i, j=1, \ldots . l$), and provided that the system of equations

$$
w_{j}\left(\beta_{1}, \ldots, \beta_{m-1}, \tau\right)=0 \quad(j=l+1, \ldots . . m)
$$

can be solved for $m-l-1$ constant β 's and r 's, finding them as functions of the remaining l independent parameters β.

For instance, if $\beta_{1}{ }^{0} \ldots \ldots \beta_{m-1}^{0}, r^{0}$ is a solution of the equations $v_{j}\left(\beta_{1}, \ldots, \beta_{\bar{n}^{1}}, r\right)=0(j=1+1, \ldots . m)$ and if at the point $\beta=\beta_{1}^{0}$. $\ldots, \beta_{m-1}=\beta_{m-1}^{\sigma^{1}}, \tau=r^{0}$ the condition

$$
\left.\frac{\partial\left(w_{l+1}, \ldots, w_{m-1}, w_{m}\right)}{\partial\left(\beta_{l+1}, \ldots, \beta_{m+1}, \tau\right.}\right|_{\beta=\beta, \tau=\tau^{*}} \neq 0
$$

is satisfied, then system (1) has a periodic solution depending on l parameters.

BIBLIOGRAPHY

1.. Liapunov, A.M., Obshchaia zadacha ob ustoichivosti duizhenia (The general problem of the stability of motion). Gostekhteoretizdat. 1950.
2. Shimanov, S.N., Ob odnom sposobe poluchenia uslovii suschchestvovania periodicheskikh reshenif nelineinykh sistem (On a method of obtaining existence conditions for periodic solutions of nonlinear systems). PMM Vol. 19, p. 225, 1955.

