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Let us consider the system of equations

dzx
T = Tt et agTy, + X, (z1, .- . Ty) (s=1,...,n) 1)
where a , are constants, Xs analytic functions of Ty eees Xp. In the
neighborhoocd of the point x, = 0, the series expansion of these functions
in powers of x« cees X, begins with terms not below the second order,
XS(O. vees 0),

1°

Liapunov has shown that if among the roots of the equation
|ag; —3A =0 (2)

there exists a pair of pure imaginaries of the form X Ai, and if the re-
maining roots have negative real parts, and if the system (1) has a holo-
morphic integral, independent of t, of the form

M(xl,...,zn)+®(x1,...,xn)=0 (3)

where ¥ is a quadratic form, and where X oeees X, is the first integral
corresponding to the root Ai{ of the linear system of differential equa-
tions of the first approximation

dx, A
ﬁ=a31x1+"'+asnxn (4)

and if the function ¢(x1, ..+, z;) has an expansion in Xy, +-+, x, be-
ginning with terms of at least the third order, then the system of equa-
tion (1) has a family of periodic solutions, depending on one real para-
meter. The period of this periodic solution is also dependent on one
parameter, and will be a holomorphic function of that parameter. The
solution x = 0 is stable in the Liapunov sensg, and any solution with
initial conditions sufficiently near x, = 0,will, as t » o, approach one
of the periodic solutions of the said family.
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We will note that this proposition is usually formulated on the assump-
tion that the roots * Ai are excluded from the system of equations of the
first approximation (4).

The Liapunov proposition cited can be generalized.

1. We will assume that equation (2) has = critical roots with simple
elementary divisors of the form X NAi, where N is a positive integer or
zero, and that among these roots there exists at least one pair of roots
of the form > Ai, The remaining roots of equation (2) have negative parts.

2. We will further assume that the system of equations (1) has = — 1
holomorphic integrals of the form

M@, ....2))+ @ (s, ...,7,)=C, (k=1,..m~1) (5)

where ”k(‘l' «ee, %) are first integrals of system (4), corresponding to
critical roots of the form + AiN, and themselves representing forms with
constant coefficients of the first or second order. The intagrals ”k are
independent among themselves. The functions ¢k are expanded in series in
the neighborhood of the point x = 0, starting with terms whose order is
higher by one than the order of the corresponding integral Mk‘

Let (¢4, -... @) (=1, ..., n) be a periodic solution of (4),
corresponding to the critical roots, It is clear that the expression

oM (i=1,,..,m
5%‘ ) j==1,...,M
xj
where the index xj indicates the substitution
z;= gx‘?h + ...+ Sm‘ij (B; = const) (i=1,.m)

is a periodic solution of a linear system, the conjugate of (4).

Thus the product

[. oM, aM li )
h gm e, ‘\ %‘Pll@u R .
\\ Coe Coe . | X | PPz - - - Qo I ()
ﬁaum_d mwmﬂlu S i
:‘1\ oz, ’ an %\ “1 q’"lg‘n,;‘. ° + Prm t}
i !
v 0 X
.’l:] = Bl(?]'1 Tt Bm(?jm (3=1ye..70)
equals the constant matrix
= I i=],...m=-1
B =by;] (Zim ™)

It can easily be shown that on the assumptions made about critical
roots (to which correspond simple elementary divisors), the rank of the
matrix B is m —~ 1, In fact it is clear that no row of the matrix can
consist of zeros, for otherwise the system (4) would have a solution
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corresponding to one of the critical roots with a secular term, since
bi1 = b‘-2 = ... biu = 0 is the condition for the existence of a periodic
solution for the system of linear nonhomogeneous equations

dx,
E=a81x1+...+asnxn+qsi(t) s=1....m

This last contradicts the assumption that simple elementary divisors
correspond to the critical roots. Let us now assume that the rank of B is
less than m —~ 1. We can then choose constants 11' ey l. such that the
first row in matrix B will become zero, e.g. if instead of the first
periodic solution (¢11, ey ¢n1) we take the combinations of periodic
solutions

m m
2 L3 SN Z 1 P
=1

o3=1
Hence it follows that the rank of matrix B equals m —~ 1.

Theorem 1, If assumptions 1 and 2 are fulfilled, then the system of
equations (1) has a family of periodic solutions depending on = — 1 real
parameters. The period of this solution will be a holomorphic function of
these parameters.

The solution = 0 is stable in the Liapunov sense, and any solution
with initial conditions sufficiently near = 0 will tend, as t » =, to
one of the solutions of the family.

Remark: The validity of this assumption for the case when, in addition
to the critical roots + Ai, equation (2) also has zero roots to which
correspond linear forms, was given by Liapunov in a note to the proof of
his theorem [1 ] (p. 253).

We will sketch the idea of a proof. Let us take the system of integro-
differential equations

dr m
s
Tr =gt e, £ X, (2 2,) (1 1) F (@14 ... +a,z)%+ Zwﬁsi
i=1
where (M
27 /A n
W, = — LY Wy (1
i=— S N Xz +T)+(a8111+...—{-asnzn)'r}\pﬁdt &
o =1
and where the functions ¢1i' N wni are periodic solutions of the con-

jugate system to system (4) of period 27 /A.

This system has a periodic solution depending on = — 1 parameters
Bi» ..., B, _ and the parameter r of the form

T = @y Br+...+ Qsm—lgm—1 + @, (¢, Br. ... Bm—l- ) (9)
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where O are periodic functions of time and analytic functions of B and r,
whose series expansion begins with terms of the second order in the
neighborhood of the point 8=1r = 0,

The functions w; will thus have the form

A
w; B, . B =— T (Dyubr+ -+ Dy Bt +

+U+DP B By (i=1,0.ym) (1)
For the system (1) to have a periodic solution of period (27 /A)(1+7r),
it is necessary and sufficient for the system of equations
w; By BT = 0 (i =1,...,m) (11)

to have a solution in the neighborhood of the point 8 =7 = 0, The pro-
positions formulated are an immediate consequence of the‘results published
in[2].

Let us now assume that the integrals (5) hold good. We will substitute
in them the periodic solution (9) of the auxiliary system (7), (8). We
get

M (21(2,B.7),..)+ @z (2, 8. 7),...)=C (1 B, ... B ® (k=1,...,m—1)

Differentiating these identities with respect to t, and taking into
consideration that x, (¢, B,r), ..., z, (¢, B. r) is a periodic solution
of the auxiliary svstem, and that C (¢, Bl, cens B.__l. r) is a periodic
function of ¢, of period 27 /A, we will next integrate these identities
with respect to t between the limits 0 and 27 /A. We thus get the system
of linear homogeneous equations

o + (. ) wr B .-, (Bm_l, T 4+...+ [b]-m + (. Nw, B, ..., ﬁm_l, =0
(j=1,...,m—1)
Terms whose order in B and 7 is higher than the first are not entered
in the parentheses (...). Since the rank of matrix B is m — 1, without
loss of generality we can assume that a system of linear homogeneous

equations in ¥yr ..., W, CAD be solved for Wi oeees @

L] m=-1

Therefore, for system (1) to have a periodic solution in this case, it
is sufficient for the condition

wm(Bl; ooy Bm"l’ T) =0

to be satisfied.

This equation can always be satisfied by a choice 7 (8;, ..., ,_ 1),
r(0, ..., 0) = 0, Substituting 7 in (9), we get a family of periodic
solutions depending on the parameters Bi' ceee Bn-—i' The period of this
solution will be 27 /A (1 + 7 (B, ..., B, _y). This proves the first part
of the assertion of Theorem 1.
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The proof of the second part of the theorem presents no difficulties,
and is a consequence of the general assumption of the Liapunov stability
theory as to a special case of the existence of a parametric solution in
critical cases.

When the number of first analytic integrals is less than = - 1, in
order that the system (1) shall have periodic solutions, some additional
conditions must be satisfied. For example, the following theorem holds
good:

Theorem 2. Let the number of integrals of type (5) be ! < » ~ 1. Then
system (1) will have a family of periodic solutions depending on ! inde-
pendent parameters, provided that Ibij‘ £#0 (i, j=1, ..., 1), and pro-
vided that the system of equations

u’j (Blt Ty Bm—lr T) =0 (j=l+1,....m)

can be solved for m — | — 1 constant B'sand r’s, finding them as func-
tions of the remaining ! independent parameters fS.

For instance, if 310- cees B:{_l. r0 is a solution of the equations
4 _ 0
»;(Bys -ens B'Ul' r)=0(j =1+ 1, ..., =) and if at the point B8 =7,

cer B.-i = 3._1. r = 10 the condition

0 (Wipys -+ s Uy W)

3(Bb+p----ﬁm44'1

0

=g T=1"

is satisfied, then system (1) has a periodic solution depending on ! para-
meters.
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